mTORC1 regulates phagosome digestion of symbiotic bacteria for intracellular nutritional symbiosis in a deep-sea mussel

Author:

Tame Akihiro123ORCID,Maruyama Tadashi2ORCID,Ikuta Tetsuro1ORCID,Chikaraishi Yoshihito4ORCID,Ogawa Nanako O.5ORCID,Tsuchiya Masashi1ORCID,Takishita Kiyotaka6,Tsuda Miwako7ORCID,Hirai Miho7,Takaki Yoshihiro7ORCID,Ohkouchi Naohiko5ORCID,Fujikura Katsunori1ORCID,Yoshida Takao12ORCID

Affiliation:

1. Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.

2. School of Marine Biosciences, University of Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.

3. Faculty of Medical Sciences, Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.

4. Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan.

5. Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.

6. Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka 813-8529, Japan.

7. Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.

Abstract

Phagocytosis is one of the methods used to acquire symbiotic bacteria to establish intracellular symbiosis. A deep-sea mussel, Bathymodiolus japonicus , acquires its symbiont from the environment by phagocytosis of gill epithelial cells and receives nutrients from them. However, the manner by which mussels retain the symbiont without phagosome digestion remains unknown. Here, we show that controlling the mechanistic target of rapamycin complex 1 (mTORC1) in mussels leads to retaining symbionts in gill cells. The symbiont is essential for the host mussel nutrition; however, depleting the symbiont’s energy source triggers the phagosome digestion of symbionts. Meanwhile, the inhibition of mTORC1 by rapamycin prevented the digestion of the resident symbionts and of the engulfed exogenous dead symbionts in gill cells. This indicates that mTORC1 promotes phagosome digestion of symbionts under reduced nutrient supply from the symbiont. The regulation mechanism of phagosome digestion by mTORC1 through nutrient signaling with symbionts is key for maintaining animal-microbe intracellular nutritional symbiosis.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3