Cooperation between bacteriocytes and endosymbionts drives function and development of symbiotic cells in mussel holobionts

Author:

Chen HaoORCID,Li Mengna,Zhong Zhaoshan,Wang Minxiao,Lian Chao,Han Guanghui,Wang Hao,Zhou Li,Zhang Huan,Cao Lei,Li Chaolun

Abstract

AbstractSymbiosis drives the adaptation and evolution in multicellular organisms. Modeling the function and development of symbiotic cells/organs in holobionts is yet challenging. Here, we surveyed the molecular function and developmental trajectory of bacteriocyte lineage in non-model deep-sea mussels by constructing a high-resolution single-cell expression atlas of gill tissue. We show that mussel bacteriocytes optimized immune processes to facilitate recognition, engulfment, and elimination of endosymbionts, and interacted with them intimately in sterol, carbohydrate, and ammonia metabolism. Additionally, the bacteriocytes could arise from three different stem cells as well as bacteriocytes themselves. In particular, we showed that the molecular functions and developmental process of bacteriocytes were guided by the same set of regulatory networks and dynamically altered regarding to symbiont abundance via sterol-related signaling. The coordination in the functions and development of bacteriocytes and between the host and symbionts underlies the interdependency of symbiosis, and drives the deep-sea adaptation of mussels.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3