1-Oleoyl-lysophosphatidylethanolamine stimulates RORγt activity in T H 17 cells

Author:

Endo Yusuke123ORCID,Kanno Toshio1ORCID,Nakajima Takahiro1ORCID,Ikeda Kazutaka4ORCID,Taketomi Yoshitaka5ORCID,Yokoyama Satoru1ORCID,Sasamoto Shigemi1,Asou Hikari K.1ORCID,Miyako Keisuke14ORCID,Hasegawa Yoshinori4,Kawashima Yusuke4ORCID,Ohara Osamu4ORCID,Murakami Makoto35,Nakayama Toshinori36ORCID

Affiliation:

1. Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.

2. Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana. Chuo-ku, Chiba 260-8670 Japan.

3. AMED-CREST, AMED, Tokyo, Japan.

4. Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.

5. Laboratory of Microenvironmental Metabolic Health Sciences Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan.

6. Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana. Chuo-ku, Chiba 260-8670 Japan.

Abstract

Metabolic fluxes involving fatty acid biosynthesis play essential roles in controlling the differentiation of T helper 17 (T H 17) cells. However, the exact enzymes and lipid metabolites involved, as well as their link to promoting the core gene transcriptional signature required for the differentiation of T H 17 cells, remain largely unknown. From a pooled CRISPR-based screen and unbiased lipidomics analyses, we identified that 1-oleoyl-lysophosphatidylethanolamine could act as a lipid modulator of retinoid-related orphan receptor gamma t (RORγt) activity in T H 17 cells. In addition, we specified five enzymes, including Gpam , Gpat3 , Lplat1 , Pla2g12a , and Scd2 , suggestive of the requirement of glycerophospholipids with monounsaturated fatty acids being required for the transcription of Il17a . 1-Oleoyl-lysophosphatidylethanolamine was reduced in Pla2g12a -deficient T H 17 cells, leading to the abolition of interleukin-17 (IL-17) production and disruption to the core transcriptional program required for the differentiation of T H 17 cells. Furthermore, mice with T cell–specific deficiency of Pla2g12a failed to develop disease in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Thus, our data indicate that 1-oleoyl-lysophosphatidylethanolamine is a lipid metabolite that promotes RORγt-induced T H 17 cell differentiation and the pathogenicity of T H 17 cells.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3