Dissecting human disease with single-cell omics: application in model systems and in the clinic

Author:

Strzelecka Paulina M.123,Ranzoni Anna M.123,Cvejic Ana123ORCID

Affiliation:

1. Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK

2. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK

3. Wellcome Trust – Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK

Abstract

ABSTRACT Probing cellular population diversity at single-cell resolution became possible only in recent years. The popularity of single-cell ‘omic’ approaches, which allow researchers to dissect sample heterogeneity and cell-to-cell variation, continues to grow. With continuous technological improvements, single-cell omics are becoming increasingly prevalent and contribute to the discovery of new and rare cell types, and to the deciphering of disease pathogenesis and outcome. Animal models of human diseases have significantly facilitated our understanding of the mechanisms driving pathologies and resulted in the development of more efficient therapies. The application of single-cell omics to animal models improves the precision of the obtained insights, and brings single-cell technology closer to the clinical field. This Review focuses on the use of single-cell omics in cellular and animal models of diseases, as well as in samples from human patients. It also highlights the potential of these approaches to further improve the diagnosis and treatment of various pathologies, and includes a discussion of the advantages and remaining challenges in implementing these technologies into clinical practice.

Funder

Cancer Research UK

European Research Council

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3