Duchenne muscular dystrophy (DMD) cardiomyocyte-secreted exosomes promote the pathogenesis of DMD-associated cardiomyopathy

Author:

Gartz Melanie12,Lin Chien-Wei3,Sussman Mark A.4ORCID,Lawlor Michael W.56,Strande Jennifer L.127ORCID

Affiliation:

1. Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA

2. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA

3. Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA

4. San Diego Heart Institute and Biology Department, San Diego State University, San Diego, CA 92182, USA

5. Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA

6. Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA

7. Department of Medicine, Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA

Abstract

ABSTRACT Cardiomyopathy is a leading cause of early mortality in Duchenne muscular dystrophy (DMD). There is a need to gain a better understanding of the molecular pathogenesis for the development effective therapies. Exosomes (exo) are secreted vesicles and exert effects via their RNA, lipid and protein cargo. The role of exosomes in disease pathology is unknown. Exosomes derived from stem cells have demonstrated cardioprotection in the murine DMD heart. However, it is unknown how the disease status of the donor cell type influences exosome function. Here, we sought to determine the phenotypic responses of DMD cardiomyocytes (DMD-iCMs) after long-term exposure to DMD cardiac exosomes (DMD-exo). DMD-iCMs were vulnerable to stress, evidenced by production of reactive oxygen species, the mitochondrial membrane potential and cell death levels. Long-term exposure to non-affected exosomes (N-exo) was protective. By contrast, long-term exposure to DMD-exo was not protective, and the response to stress improved with inhibition of DMD-exo secretion in vitro and in vivo. The microRNA (miR) cargo, but not exosome surface peptides, was implicated in the pathological effects of DMD-exo. Exosomal surface profiling revealed N-exo peptides associated with PI3K-Akt signaling. Transcriptomic profiling identified unique changes with exposure to either N- or DMD-exo. Furthermore, DMD-exo miR cargo regulated injurious pathways, including p53 and TGF-beta. The findings reveal changes in exosomal cargo between healthy and diseased states, resulting in adverse outcomes. Here, DMD-exo contained miR changes, which promoted the vulnerability of DMD-iCMs to stress. Identification of these molecular changes in exosome cargo and effectual phenotypes might shed new light on processes underlying DMD cardiomyopathy. This article has an associated First Person interview with the first author of the paper.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3