MYOTOMAL MUSCLE FUNCTION AT DIFFERENT LOCATIONS IN THE BODY OF A SWIMMING FISH

Author:

Altringham J. D.,Wardle C. S.,Smith C. I.

Abstract

We describe experiments on isolated, live muscle fibres which simulate their in vivo activity in a swimming saithe (Pollachius virens). Superficial fast muscle fibres isolated from points 0.35, 0.5 and 0.65 body lengths (BL) from the anterior tip had different contractile properties. Twitch contraction time increased from rostral to caudal myotomes and power output (measured by the work loop technique) decreased. Power versus cycle frequency curves of rostral fibres were shifted to higher frequencies relative to those of caudal fibres. In the fish, phase differences between caudally travelling waves of muscle activation and fish bending suggest a change in muscle function along the body. In vitro experiments indicate that in vivo superficial fast fibres of rostral myotomes are operating under conditions that yield maximum power output. Caudal myotomes are active as they are lengthened in vivo and initially operate under conditions which maximise their stiffness, before entering a positive power-generating phase. A description is presented for the generation of thrust at the tail blade by the superficial, fast, lateral muscle. Power generated rostrally is transmitted to the tail by stiffened muscle placed more caudally. A transition zone between power generation and stiffening travels caudally, and all but the most caudal myotomes generate power at some phase of the tailbeat. Rostral power output, caudal force, bending moment and force at the tail blade are all maximal at essentially the same moment in the tailbeat cycle, as the tail blade crosses the swimming track.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3