Palmitoylated CKAP4 regulates mitochondrial functions through an interaction with VDAC2 at ER–mitochondria contact sites

Author:

Harada Takeshi1,Sada Ryota1,Osugi Yoshito1,Matsumoto Shinji1,Matsuda Tomoki2,Hayashi-Nishino Mitsuko3,Nagai Takeharu2ORCID,Harada Akihiro4ORCID,Kikuchi Akira1ORCID

Affiliation:

1. Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan

2. Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, 8-1 Mihogaoka, Osaka 567-0047, Japan

3. Department of Biomolecular Science and Regulation and Artificial Intelligence Research Center, Osaka University, Ibaraki, 8-1 Mihogaoka, Osaka 567-0047, Japan

4. Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan

Abstract

Cytoskeleton-associated protein 4 (CKAP4) is palmitoylated type II transmembrane protein localized to the endoplasmic reticulum (ER). Knockout (KO) of CKAP4 in HeLaS3 cells induced the alterations of mitochondrial structures and increased the number of ER-mitochondria contact sites. To understand the involvement of CKAP4 in mitochondrial functions, the binding proteins of CKAP4 were explored, enabling identification of the mitochondrial porin voltage-dependent anion-selective channel protein 2 (VDAC2), which is localized to the outer mitochondrial membrane. Palmitoylation at Cys100 of CKAP4 was required for the binding of CKAP4 and VDAC2. In CKAP4 KO cells, the binding of inositol trisphosphate receptor (IP3R) and VDAC2 was enhanced, the intramitochondrial Ca2+ concentration increased, and the mitochondrial membrane potential decreased. In addition, CKAP4 KO decreased the oxidative consumption rate, in vitro cancer cell proliferation under low-glucose conditions, and in vivo xenograft tumor formation. The phenotypes were not rescued by a palmitoylation-deficient CKAP4 mutant. These results suggest that CKAP4 plays a role in maintaining mitochondrial functions through the binding to VDAC2 at ER–mitochondria contact sites and that palmitoylation is required for this novel function of CKAP4.

Funder

the Ministry of Education, Culture, Sports, Science and Technology Japan

Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3