Abstract
Abstract
Objective. Four-dimensional computed tomography (4DCT) imaging consists in reconstructing a CT acquisition into multiple phases to track internal organ and tumor motion. It is commonly used in radiotherapy treatment planning to establish planning target volumes. However, 4DCT increases protocol complexity, may not align with patient breathing during treatment, and lead to higher radiation delivery. Approach. In this study, we propose a deep synthesis method to generate pseudo respiratory CT phases from static images for motion-aware treatment planning. The model produces patient-specific deformation vector fields (DVFs) by conditioning synthesis on external patient surface-based estimation, mimicking respiratory monitoring devices. A key methodological contribution is to encourage DVF realism through supervised DVF training while using an adversarial term jointly not only on the warped image but also on the magnitude of the DVF itself. This way, we avoid excessive smoothness typically obtained through deep unsupervised learning, and encourage correlations with the respiratory amplitude. Main results. Performance is evaluated using real 4DCT acquisitions with smaller tumor volumes than previously reported. Results demonstrate for the first time that the generated pseudo-respiratory CT phases can capture organ and tumor motion with similar accuracy to repeated 4DCT scans of the same patient. Mean inter-scans tumor center-of-mass distances and Dice similarity coefficients were 1.97 mm and 0.63, respectively, for real 4DCT phases and 2.35 mm and 0.71 for synthetic phases, and compares favorably to a state-of-the-art technique (RMSim). Significance. This study presents a deep image synthesis method that addresses the limitations of conventional 4DCT by generating pseudo-respiratory CT phases from static images. Although further studies are needed to assess the dosimetric impact of the proposed method, this approach has the potential to reduce radiation exposure in radiotherapy treatment planning while maintaining accurate motion representation. Our training and testing code can be found at https://github.com/cyiheng/Dynagan.
Reference55 articles.
1. Medical segmentation decathlon;Antonelli;Nat. Commun.,2022
2. Image and volume conditioning for respiratory motion synthesis using GANs;Cao,2021
3. Patient-specific 4DCT respiratory motion synthesis using tumor-aware GANs;Cao;IEEE NSS MIC 2022,2022
4. The diaphragm as an anatomic surrogate for lung tumor motion;Cerviño;Phys. Med. Biol.,2009
5. A generative adversarial network (GAN)-based technique for synthesizing realistic respiratory motion in the extended cardiac-torso (XCAT) phantoms;Chang;Phys. Med. Biol.,2021