Improving cone-beam CT quality using a cycle-residual connection with a dilated convolution-consistent generative adversarial network

Author:

Deng LiweiORCID,Zhang MingxingORCID,Wang Jing,Huang Sijuan,Yang XinORCID

Abstract

Abstract Objective.Cone-Beam CT (CBCT) often results in severe image artifacts and inaccurate HU values, meaning poor quality CBCT images cannot be directly applied to dose calculation in radiotherapy. To overcome this, we propose a cycle-residual connection with a dilated convolution-consistent generative adversarial network (Cycle-RCDC-GAN). Approach. The cycle-consistent generative adversarial network (Cycle-GAN) was modified using a dilated convolution with different expansion rates to extract richer semantic features from input images. Thirty pelvic patients were used to investigate the effect of synthetic CT (sCT) from CBCT, and 55 head and neck patients were used to explore the generalizability of the model. Three generalizability experiments were performed and compared: the pelvis trained model was applied to the head and neck; the head and neck trained model was applied to the pelvis, and the two datasets were trained together. Main results. The mean absolute error (MAE), the root mean square error (RMSE), peak signal to noise ratio (PSNR), the structural similarity index (SSIM), and spatial nonuniformity (SNU) assessed the quality of the sCT generated from CBCT. Compared with CBCT images, the MAE improved from 28.81 to 18.48, RMSE from 85.66 to 69.50, SNU from 0.34 to 0.30, and PSNR from 31.61 to 33.07, while SSIM improved from 0.981 to 0.989. The sCT objective indicators of Cycle-RCDC-GAN were better than Cycle-GAN’s. The objective metrics for generalizability were also better than Cycle-GAN’s. Significance. Cycle-RCDC-GAN enhances CBCT image quality and has better generalizability than Cycle-GAN, which further promotes the application of CBCT in radiotherapy.

Funder

Youth Innovation Project of Sun Yat-sen University Cancer Center

Basic and Applied Basic Research Foundation of Guangdong Province

Natural Science Foundation of Heilongjiang Province

National Science Foundation for Young Scientists

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3