Decoding of grasping tasks from intraneural recordings in trans-radial amputee

Author:

Cracchiolo MarinaORCID,Valle GiacomoORCID,Petrini Francesco,Strauss IvoORCID,Granata Giuseppe,Stieglitz Thomas,Rossini Paolo M,Raspopovic Stanisa,Mazzoni Alberto,Micera SilvestroORCID

Abstract

Abstract Objective. A major challenge in neuroprosthetics is the restoration of sensory-motor hand functions in upper-limb amputees. Neuroprostheses based on the direct re-connection of the peripheral nerves may be an interesting approach for re-establishing the natural and effective bidirectional control of hand prostheses. Recent results have shown that transverse intrafascicular multi-channel electrodes (TIMEs) can restore natural and sophisticated sensory feedback. However, the potential of using TIME-recorded motor intraneural signals to decode grasping tasks has not as yet been explored. Approach. In this study, we show that several hand-movement intentions can be decoded from intraneural signals recorded using four TIMEs implanted in the median and ulnar nerves of an upper limb amputee. Experimental sessions were performed over a week, from day 16 to day 23 after the surgical operation. Intraneural activity was recorded during several hand motor tasks imagined by the subject and processed offline. Main results. We obtained a very high decoding accuracy considering 11 class states (up to 83%). These results confirm that neural signals recorded by multi-channel intraneural electrodes can be used to decode several movement intentions with high accuracy. Moreover, we were able to use same TIME channels for decoding over one week within the first month, even if the stability has to be confirmed during long-term experiments. Significance. Therefore, TIMEs could be used in the future to achieve a complete bidirectional approach exploiting neural pathways, to make a more natural and intuitive new generation of hand prostheses that have a closer resemblance to a healthy hand.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Fondation Bertarelli

European Commission

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3