Design optimization of a high-sensitive absolute micro-pressure sensor

Author:

Yu Zhongliang,Zhao Yulong,Li Lili,Li Cun,Meng Xiawei,Tian Bian

Abstract

Purpose – The purpose of this study is to develop a piezoresistive absolute micro-pressure sensor for altimetry. For this application, both high sensitivity and high overload resistance are required. To develop a piezoresistive absolute micro-pressure sensor for altimetry, both high sensitivity and high-overload resistance are required. The structure design and optimization are critical for achieving the purpose. Besides, the study of dynamic performances is important for providing a solution to improve the accuracy under vibration environments. Design/methodology/approach – An improved structure is studied through incorporating sensitive beams into the twin-island-diaphragm structure. Equations about surface stress and deflection of the sensor are established by multivariate fittings based on the ANSYS simulation results. Structure dimensions are determined by MATLAB optimization. The silicon bulk micromachining technology is utilized to fabricate the sensor prototype. The performances under both static and dynamic conditions are tested. Findings – Compared with flat diaphragm and twin-island-diaphragm structures, the sensor features a relatively high sensitivity with the capacity of suffering atmosphere due to the introduction of sensitive beams and the optimization method used. Originality/value – An improved sensor prototype is raised and optimized for achieving the high sensitivity and the capacity of suffering atmosphere simultaneously. A general optimization method is proposed based on the multivariate fitting results. To simplify the calculation, a method to linearize the nonlinear fitting and optimization problems is presented. Moreover, a differential readout scheme attempting to decrease the dynamic interference is designed.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3