Unexpected metabolic rewiring of CO 2 fixation in H 2 -mediated materials–biology hybrids

Author:

Xie Yongchao1ORCID,Erşan Sevcan2ORCID,Guan Xun1,Wang Jingyu1ORCID,Sha Jihui3,Xu Shuangning1,Wohlschlegel James A.3,Park Junyoung O.24ORCID,Liu Chong14ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

2. Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095

3. Department of Biological Chemistry, University of California, Los Angeles, CA 90095

4. California NanoSystems Institute, University of California, Los Angeles, CA 90095

Abstract

A hybrid approach combining water-splitting electrochemistry and H 2 -oxidizing, CO 2 -fixing microorganisms offers a viable solution for producing value-added chemicals from sunlight, water, and air. The classic wisdom without thorough examination to date assumes that the electrochemistry in such a H 2 -mediated process is innocent of altering microbial behavior. Here, we report unexpected metabolic rewiring induced by water-splitting electrochemistry in H 2 -oxidizing acetogenic bacterium Sporomusa ovata that challenges such a classic view. We found that the planktonic S. ovata is more efficient in utilizing reducing equivalent for ATP generation in the materials–biology hybrids than cells grown with H 2 supply, supported by our metabolomic and proteomic studies. The efficiency of utilizing reducing equivalents and fixing CO 2 into acetate has increased from less than 80% of chemoautotrophy to more than 95% under electroautotrophic conditions. These observations unravel previously underappreciated materials’ impact on microbial metabolism in seemingly simply H 2 -mediated charge transfer between biotic and abiotic components. Such a deeper understanding of the materials–biology interface will foster advanced design of hybrid systems for sustainable chemical transformation.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3