Computational design of genomic transcriptional networks with adaptation to varying environments

Author:

Carrera Javier,Elena Santiago F.,Jaramillo Alfonso

Abstract

Transcriptional profiling has been widely used as a tool for unveiling the coregulations of genes in response to genetic and environmental perturbations. These coregulations have been used, in a few instances, to infer global transcriptional regulatory models. Here, using the large amount of transcriptomic information available for the bacteriumEscherichia coli, we seek to understand the design principles determining the regulation of its transcriptome. Combining transcriptomic and signaling data, we develop an evolutionary computational procedure that allows obtaining alternative genomic transcriptional regulatory network (GTRN) that still maintains its adaptability to dynamic environments. We apply our methodology to anE. coliGTRN and show that it could be rewired to simpler transcriptional regulatory structures. These rewired GTRNs still maintain the global physiological response to fluctuating environments. Rewired GTRNs contain 73% fewer regulated operons. Genes with similar functions and coordinated patterns of expression across environments are clustered into longer regulated operons. These synthetic GTRNs are more sensitive and show a more robust response to challenging environments. This result illustrates that the natural configuration ofE. coliGTRN does not necessarily result from selection for robustness to environmental perturbations, but that evolutionary contingencies may have been important as well. We also discuss the limitations of our methodology in the context of the demand theory. Our procedure will be useful as a novel way to analyze global transcription regulation networks and in synthetic biology for the de novo design of genomes.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3