Affiliation:
1. Department of Cell and Molecular Biology, Institute for Molecular Bioscience, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
Abstract
Significance
Synthetic biology envisages the creation of custom-based signaling by means of modular plug-and-play. This concept has primarily been realized in the construction of synthetic gene circuits. However, all real-time events in biology are processed by protein-based sensing and signal transducing systems; yet, the systematic bottom-up design of protein-based signaling systems remains elusive to date. Here we report a strategy for construction of modular protein switches based on artificially autoinhibited proteases whose activity can be modulated by specific proteolysis, ligand binding, or protein–protein interactions. We demonstrate that such protease-based ligand receptors or signal transducers can be assembled into different types of integrated signal sensing and amplification circuits that, in principle, can be connected to any biological process.
Publisher
Proceedings of the National Academy of Sciences
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献