Dynamically Reshaping Signaling Networks to Program Cell Fate via Genetic Controllers

Author:

Galloway Kate E.1,Franco Elisa2,Smolke Christina D.3

Affiliation:

1. Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, MC 210-41, California Institute of Technology, Pasadena, CA 91125, USA.

2. Department of Mechanical Engineering, 900 University Avenue, University of California at Riverside, Riverside, CA 92521, USA.

3. Department of Bioengineering, 473 Via Ortega, MC 4201, Stanford University, Stanford, CA 94305, USA.

Abstract

Toward Synthetic Biology The detection of an appropriate point to intervene in a cellular pathway and minimize off-target effects on other cellular processes present problems for the design of circuits that control cellular signaling pathways and thus direct cell function. Galloway et al. (p. 1358 , published online 15 August; see the Perspective by Sarkar ) report progress on these challenges in the yeast Saccharomyces cerevisiae . A molecular control system was developed to direct the yeast cells to one of three cell fates. To avoid disruption of other cellular controls, exogenous ribozyme-based controllers that interfaced with the endogenous control circuits were used, which avoided genetic alteration to the cells. After enhancing the control circuits with feedback loops to make their behavior more reliable, the circuits were used to modulate the abundance of particular components that acted as critical regulators of yeast cell-fate decisions. This allowed direction of cell fate in response to a chosen chemical stimulus. These strategies may be adaptable to allow similar direction of the physiological state of mammalian cells, for example, to allow therapeutic applications of synthetic biology.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3