Water content for clot composition prediction in acute ischemic stroke

Author:

Sakuta KenichiORCID,Imahori Taichiro,Molaie AmirORCID,Ghovvati Mahsa,Rao Neal,Tateshima Satoshi,Kaneko NaokiORCID

Abstract

Background Mechanical thrombectomy (MT) has become the gold standard care for treating acute ischemic stroke (AIS) due to large vessel occlusion. Emerging evidence suggests that understanding the composition of clots prior to intervention could be useful for the selection of neuroendovascular techniques, potentially improving the efficacy of treatments. However, current imaging modalities lack the ability to distinguish clot composition accurately and reliably. Since water content can influence signal intensity on CT and MRI scans, its assessment may provide indirect clues about clot composition. This study aimed to elucidate the correlation between water content and clot composition using human clots retrieved from stroke patients and experimentally generated ovine clots. Materials and methods This study involved an analysis of ten clots retrieved from patients with AIS undergoing MT. Additionally, we created ten red blood cells (RBC)-rich and ten fibrin-rich ovine blood clots, which were placed in a human intracranial vascular model under realistic flow conditions. The water content and compositions of these clots were evaluated, and linear regression analyses were performed to determine the relationship between clot composition and water content. Results The regression analysis in human stroke clots revealed a significant negative association between RBC concentration and water content. We also observed a positive correlation between water content and both fibrin and platelets in ovine blood clots. Conclusion

Funder

Society of Vascular and Interventional Neurology

Tarsadia Foundation

Jennifer Carroll Wilson Aneurysm Foundation

Frederick Gardner Cottrell Foundation

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3