Comparative study on stream flow prediction using the GMNN and wavelet-based GMNN

Author:

Agarwal Shivam1ORCID,Roy Parthajit1,Choudhury Parthasarathi1,Debbarma Nilotpal1

Affiliation:

1. Department of Civil Engineering, National Institute of Technology Silchar, NIT Road, Silchar, Assam 788010, India

Abstract

Abstract Flood flow forecasting is essential for mitigating damage in flood-prone areas all over the world. Advanced actions and methodology to optimize peak flow criteria can be adopted based on forecasted discharge information. This paper applied the models of the integrated wavelet, multilayer perceptron (MLP), time-delay neural network (TDNN), and gamma memory neural network (GMNN) to predict hourly river-level fluctuations, including storage rate change variable. Accordingly, the researchers initially used the discrete wavelet transform to decompose the water discharge time-series into low- and high-frequency components. After that, each component was separately predicted by using the MLP, TDNN, and GMNN models. The performance of the proposed models, namely wavelet–MLP, wavelet–TDNN, and wavelet–GMNN, was compared with that of single MLP, TDNN, and GMNN models. This analysis affirms that precision is better in the case of integrated models for forecasting river reach levels in the study region. Furthermore, multiple inputs–multiple outputs (MIMO) networks (MIMO-1 artificial neural network (ANN) and MIMO-2 ANN), along with multiple inputs–single output (MISO) ANN were employed for obtaining flow forecasts for several sections in a river basin. Model performances were also evaluated using the root mean squared error having less than 10% of the average mean value, with the coefficient of correlation being more than 0.91 and with the peak flow criteria showing the chances of flash floods being low to moderate with values not more than 0.15.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3