Active site substitutions delineate distinct classes of eubacterial flap endonuclease

Author:

Allen Lee M.1,Hodskinson Michael R. G.1,Sayers Jon R.1

Affiliation:

1. The University of Sheffield School of Medicine and Biomedical Sciences, Henry Wellcome Laboratories for Medical Research, Department of Infection and Immunity, Sheffield S10 2RX, U.K.

Abstract

FENs (flap endonucleases) play essential roles in DNA replication, pivotally in the resolution of Okazaki fragments. In eubacteria, DNA PolI (polymerase I) contains a flap processing domain, the N-terminal 5′→3′ exonuclease. We present evidence of paralogous FEN-encoding genes present in many eubacteria. Two distinct classes of these independent FEN-encoding genes exist with four groups of eubacteria, being identified based on the number and type of FEN gene encoded. The respective proteins possess distinct motifs hallmarking their differentiation. Crucially, based on primary sequence and predicted secondary structural motifs, we reveal key differences at their active sites. These results are supported by biochemical characterization of two family members - ExoIX (exonuclease IX) from Escherichia coli and SaFEN (Staphylococcus aureus FEN). These proteins displayed marked differences in their ability to process a range of branched and linear DNA structures. On bifurcated substrates, SaFEN exhibited similar substrate specificity to previously characterized FENs. In quantitative exonuclease assays, SaFEN maintained a comparable activity with that reported for PolI. However, ExoIX showed no observable enzymatic activity. A threaded model is presented for SaFEN, demonstrating the probable interaction of this newly identified class of FEN with divalent metal ions and a branched DNA substrate. The results from the present study provide an intriguing model for the cellular role of these FEN sub-classes and illustrate the evolutionary importance of processing aberrant DNA, which has led to their maintenance alongside DNA PolI in many eubacteria.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3