Bacillus subtilis encodes a discrete flap endonuclease that cleaves RNA-DNA hybrids

Author:

Lowder Frances Caroline,Simmons Lyle A.ORCID

Abstract

The current model for Okazaki fragment maturation in bacteria invokes RNA cleavage by RNase H, followed by strand displacement synthesis and 5′ RNA flap removal by DNA polymerase I (Pol I). RNA removal by Pol I is thought to occur through the 5′-3′ flap endo/exonuclease (FEN) domain, located in the N-terminus of the protein. In addition to Pol I, many bacteria encode a second, Pol I-independent FEN. The contribution of Pol I and Pol I-independent FENs to DNA replication and genome stability remains unclear. In this work we purified Bacillus subtilis Pol I and FEN, then assayed these proteins on a variety of RNA-DNA hybrid and DNA-only substrates. We found that FEN is far more active than Pol I on nicked double-flap, 5′ single flap, and nicked RNA-DNA hybrid substrates. We show that the 5′ nuclease activity of B. subtilis Pol I is feeble, even during DNA synthesis when a 5′ flapped substrate is formed modeling an Okazaki fragment intermediate. Examination of Pol I and FEN on DNA-only substrates shows that FEN is more active than Pol I on most substrates tested. Further experiments show that ΔpolA phenotypes are completely rescued by expressing the C-terminal polymerase domain while expression of the N-terminal 5′ nuclease domain fails to complement ΔpolA. Cells lacking FEN (ΔfenA) show a phenotype in conjunction with an RNase HIII defect, providing genetic evidence for the involvement of FEN in Okazaki fragment processing. With these results, we propose a model where cells remove RNA primers using FEN while upstream Okazaki fragments are extended through synthesis by Pol I. Our model resembles Okazaki fragment processing in eukaryotes, where Pol δ catalyzes strand displacement synthesis followed by 5′ flap cleavage using FEN-1. Together our work highlights the conservation of ordered steps for Okazaki fragment processing in cells ranging from bacteria to human.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3