Increased expression of the inositol 1,4,5-trisphosphate receptor in human leukaemic (HL-60) cells differentiated with retinoic acid or dimethyl sulphoxide

Author:

Bradford P G1,Autieri M2

Affiliation:

1. Department of Pharmacology and Therapeutics, State University of New York at Buffalo, Buffalo, NY 14214, U.S.A.

2. Program of Molecular Biology and Biotechnology, Hahnemann University, Philadelphia, PA 19102, U.S.A.

Abstract

The Ins(1,4,5)P3 receptor was examined in human promyelocytic leukaemic cells (HL-60) and in HL-60 cells differentiated towards granulocytes with either retinoic acid (RA) or dimethyl sulphoxide (Me2SO). HL-60 cell membranes enriched in marker enzyme activities of the endoplasmic reticulum and the plasma membrane possess a high-affinity binding site for [3H]Ins(1,4,5)P3 (KD = 22 nM). Electrotransfer studies indicate that Ins(1,4,[32P]5)P3 binds specifically to a 260 kDa protein of HL-60 cell membranes. This Ins(1,4,5)P3-binding protein selectively binds Ca(2+)-mobilizing inositol phosphates and other inositol phosphates which also bind to the purified InsP3 receptor, suggesting that the Ins(1,4,5)P3-binding protein of HL-60 cell membranes is the InsP3 receptor. When HL-60 cells are incubated with 1 microM-RA or with 1.25% Me2SO the cells differentiate within 5-7 days into cells resembling neutrophils in both structure and function. Treated cells cease to proliferate, acquire the ability to reduce Nitro Blue Tetrazolium dye, and undergo morphological changes typical of differentiated granulocytes. Concomitant with HL-60 cell differentiation, the maximal [3H]Ins(1,4,5)P3 binding in membranes increases 3-4-fold, with no change in KD. The results suggest that there is an absolute increase in the level of the InsP3 receptor during HL-60 cell differentiation and that the expression of this signal-transducing protein may be specifically regulated by differentiation factors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3