Long non-coding RNA GAS5 aggravates myocardial depression in mice with sepsis via the microRNA-449b/HMGB1 axis and the NF-κB signaling pathway

Author:

Gao Hongfeng1,Ma Huijing2ORCID,Gao Min3,Chen Aichun1,Zha Shujuan1,Yan Jixi1

Affiliation:

1. Department of Emergency Medicine, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430000, Hubei, P.R. China

2. Department of Image, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, P.R. China

3. Department of Anesthesia, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430000, Hubei, P.R. China

Abstract

Abstract Sepsis is a common cause of deaths of patients in intensive care unit. The study aims to figure out the role of long non-coding RNA (lncRNA) GAS5 in the myocardial depression in mice with sepsis. Cecal ligation and puncture (CLP) was applied to induce sepsis in mice, and then the heart function, myocardium structure, and the inflammatory response were evaluated. Differentially expressed lncRNAs in mice with sepsis were identified. Then gain- and loss-of-functions of GAS5 were performed in mice to evaluate its role in mouse myocardial depression. The lncRNA-associated microRNA (miRNA)–mRNA network was figured out via an integrative prediction and detection. Myocardial injury was observed by overexpression of high-mobility group box 1 (HMGB1) in septic mice with knockdown of GAS5 expression. Activity of NF-κB signaling was evaluated, and NF-κB inhibition was induced in mice with sepsis and overexpression of GAS5. Collectively, CLP resulted in myocardial depression and injury, and increased inflammation in mice. GAS5 was highly expressed in septic mice. GAS5 inhibition reduced myocardial depression, myocardial injury and inflammation responses in septic mice. GAS5 was identified to bind with miR-449b and to elevate HMGB1 expression, thus activating the NF-κB signaling. HMGB1 overexpression or NF-κB inactivation reduced the GAS5-induced myocardial depression and inflammation in septic mice. Our study suggested that GAS5 might promote sepsis-induced myocardial depression via the miR-449b/HMGB1 axis and the following NF-κB activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3