circROCK1 Promotes septic myocardial injury through regulating miR-96-5p/OXSR1 axis

Author:

He ZhiYu,Xu Lingling,Zeng Xiaojun,Yang Biqing,Liu Peiying,Han Dunzheng,Xue Hao,Luo BihuiORCID

Abstract

Objective: A recent high-throughput sequencing showed that circular RNA Rho-associated kinase 1 (circROCK1) is abnormally highly expressed in sepsis, but whether it is involved in sepsis development remains unclear. The objective of this study was to investigate the biological function of circROCK1 in sepsis-induced myocardial injury and reveal its potential downstream molecular mechanism. Methods: Real-time reverse transcriptase-polymerase chain reaction was applied to detect circROCK1 and miR-96-5p expressions in the serum of septic patients. Spearman correlation analysis examined the correlation between circROCK1 and the clinicopathological characteristics of septic patients. The Cecal puncture and ligation (CLP) method was used to establish an in vivo sepsis model. circROCK1 and miR-96-5p expressions in mice were modified by injection of lentivirus or oligonucleotide. The left ventricular systolic pressure, left ventricular end-diastolic pressure, and the maximum increase/decrease rate of left ventricular pressure were checked. ELISA was applied to detect inflammatory factors levels as well as myocardial injury markers levels. Hematoxylin and eosin staining was performed to observe pathological changes in myocardial tissues, and Western blot examined phosphorylated nuclear factor (NF)-κB and oxidative stress-responsive 1 (OXSR1) expression. Dual luciferase reporter experiment was conducted to confirm the targeting relationship between circROCK1, OXSR1, and miR-96-5p. Results: circROCK1 and OXSR1 were highly expressed in sepsis and miR-96-5p was under-expressed. circROCK1 was positively correlated with serum creatinine, C-reactive protein, procalcitonin, and sequential organ failure assessment scores in septic patients. Silencing circROCK1 could improve the diastolic and systolic function of CLP mice, as well as myocardial damage, reduce myocardial tissue edema and necrosis, and inhibit inflammatory factor level and phosphorylated NF-κB expression. Down-regulating miR-96-5p promoted myocardial injury in CLP mice. Silencing circROCK1 and miR-96-5p inhibited and promoted OXSR1 expression, respectively. Both circROCK1 and OXSR1 had a targeting relationship with miR-96-5p. Conclusion: CircROCK1 promotes myocardial injury in septic mice by regulating the miR-96-5p/OXSR1 axis, and it can be used as a potential target for treating septic myocardial dysfunction.

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3