The effects of galactolipid depletion on the structure of a photosynthetic membrane.

Author:

Jacob J S,Miller K R

Abstract

The galactolipids monogalactosyldiglyceride and digalactosyldiglyceride together comprise more than 77% of the photosynthetic membrane lipids of higher plant chloroplasts. We have isolated a lipase from the chloroplasts of runner beans (Phaseolus vulgaris) which is highly specific for these galactolipids. This galactolipase promotes the hydrolysis of monogalactosyldiglyceride and digalactosyldiglyceride, in the process liberating two free fatty acids into the membrane bilayer, leaving the residual galactosyl glyceride group to diffuse into the aqueous bulk phase. Isolated spinach photosynthetic membranes were treated with this enzyme preparation and changes in membrane composition were studied with thin layer chromatography (for lipids), gel electrophoresis (proteins), and freeze-etching (membrane structure). After 30 min of lipolysis, nearly 100% of the galactolipids had been converted into membrane-associated fatty acids and water-soluble galactosyl glycerides. SDS PAGE showed that two proteins, one of which is possibly associated with the reaction center of photosystem II, were removed by the treatment. Despite the minor nature of changes in membrane protein composition, freeze-fracture and freeze-etch studies showed that striking changes in membrane structure had taken place. The large freeze-fracture particle on the E fracture face had disappeared in stacked regions of the membrane system. In addition, a tetrameric particle visible at the inner surface of the membrane had apparently dissociated into individual monomeric particles. The fact that these two structures are so dramatically affected by the loss of galactolipids strongly suggests that these lipids play a crucial role in maintaining their structure. Both structures are believed to be different views of the same transmembrane unit: a membrane-spanning complex associated with photosystem II. Our results are consistent with two possible interpretations: the intramembrane particles may be lipidic in nature, and hence lipolysis causes their disappearance; or galactolipids are necessary for the organization of a complex photosystem II-associated structure which is composed of a number of different molecular species.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3