Structure/function analysis of the integrin beta 1 subunit by epitope mapping

Author:

Shih DT1,Edelman JM1,Horwitz AF1,Grunwald GB1,Buck CA1

Affiliation:

1. Wistar Institute, Philadelphia, PA 19104.

Abstract

Monoclonal antibodies (mAbs) have been produced against the chicken beta 1 subunit that affect integrin functions, including ligand binding, alpha subunit association, and regulation of ligand specificity. Epitope mapping of these antibodies was used to identify regions of the subunit involved in these functions. To accomplish this, we produced mouse/chicken chimeric beta 1 subunits and expressed them in mouse 3T3 cells. These chimeric subunits were fully functional with respect to heterodimer formation, cell surface expression, and cell adhesion. They differed in their ability to react with a panel anti-chicken beta 1 mAbs. Epitopes were identified by a loss of antibody binding upon substitution of regions of the chicken beta 1 subunit by homologous regions of the mouse beta 1 subunit. The identification of the epitope was confirmed by a reciprocal exchange of chicken and mouse beta 1 domains that resulted in the gain of the ability of the mouse subunit to interact with a particular anti-chicken beta 1 mAb. Using this approach, we found that the epitopes for one set of antibodies that block ligand binding mapped toward the amino terminal region of the beta 1 subunit. This region is homologous to a portion of the ligand-binding domain of the beta 3 subunit. In addition, a second set of antibodies that either block ligand binding, alter ligand specificity, or induce alpha/beta subunit dissociation mapped to the cysteine rich repeats near the transmembrane domain of the molecule. These data are consistent with a model in which a portion of beta 1 ligand binding domain rests within the amino terminal 200 amino acids and a regulatory domain, that affects ligand binding through secondary changes in the structure of the molecule resides in a region of the subunit, possibly including the cysteine-rich repeats, nearer the transmembrane domain. The data also suggest the possibility that the alpha subunit may exert an influence on ligand specificity by interacting with this regulatory domain of the beta 1 subunit.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3