Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly.

Author:

Cabral F,Wible L,Brenner S,Brinkley B R

Abstract

In the accompanying paper (Cabral, F., 1982, J. Cell. Biol., 97:22-29) we described the isolation and properties of taxol-requiring mutants of Chinese hamster ovary cells. We now show that at least one of these mutants, Tax-18, has an impaired ability to form a spindle apparatus. Immunofluorescence studies using antibodies to tubulin demonstrate that, when incubated in the absence of taxol, Tax-18 forms only a rudimentary spindle with few and shortened microtubules associated with the spindle poles. Furthermore, midbodies were not observed, consistent with an absence of cytokinesis. Essentially normal spindles and midbodies are seen in the presence of taxol. Electron microscopic examination indicates that centrioles and kinetochores are morphologically normal in the mutant strain. Pole-to-kinetochore microtubules were seen but interpolar microtubules were not. Taxol-deprived mutant cells stained with anti-centrosome serum show an elevated centriole content, indicating that the defect in Tax-18 does not affect centriole replication or prevent progression through the cell cycle. Although Tax-18 cells do not form a complete spindle in the absence of taxol, cytoplasmic microtubule assembly occurs in association with microtubule-organizing centers, and microtubules with apparently normal morphology exist throughout the cytoplasm. Observation of chromosome movement indicates that the defect in these cells occurs after prometaphase. These studies demonstrate that the formation of spindle microtubules requires cellular conditions that are different from those required for cytoplasmic microtubule formation. They further show that a normal spindle may be necessary for cytokinesis but not for progress of the cells through the cell cycle.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3