Greatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna

Author:

Yang Guoce1,Niu Yijie23,Wei Hong24,Bai Benfeng1,Sun Hong-Bo1

Affiliation:

1. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China

2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

3. School of Physics and Technology, Wuhan University, Wuhan 430072, China

4. Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Abstract

AbstractOptical nanoantennas can efficiently harvest electromagnetic energy from nanoscale space and boost the local radiation to the far field. The dielectric-metal nanogap is a novel design that can help to overcome the core issue of optical loss in all-metal nanostructures while enabling photon density of states larger than that in all-dielectric counterparts. This article reports that a crystalline spherical silicon nanoparticle on metal film (SiNPoM) nanoantenna can largely enhance the spontaneous emission intensity of quantum dots by an area-normalized factor of 69 and the decay rate by 42-fold compared with quantum dots on glass. A high total quantum efficiency of over 80%, including ~20% for far-field radiation and ~60% for surface plasmon polaritons, is obtained in simulation. Thanks to not only the low optical loss in dielectric nanoparticles but also the appropriate gap thickness which weakens the non-radiative decay due to the quenching from metal. Mie resonant modes additionally provide the flexible control of far-field emission patterns. Such a simple optical nanoantenna can be combined with various nanoscale optical emitters and easily extended to form large area metasurfaces functioning as active regions in light-emitting devices in applications such as advanced display, wireless optical communication, and quantum technology.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3