Plasmonic Nanolaser Using Epitaxially Grown Silver Film

Author:

Lu Yu-Jung1,Kim Jisun2,Chen Hung-Ying1,Wu Chihhui2,Dabidian Nima2,Sanders Charlotte E.2,Wang Chun-Yuan1,Lu Ming-Yen3,Li Bo-Hong4,Qiu Xianggang4,Chang Wen-Hao5,Chen Lih-Juann3,Shvets Gennady2,Shih Chih-Kang2,Gwo Shangjr1

Affiliation:

1. Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan.

2. Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA.

3. Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan.

4. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

5. Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan.

Abstract

Going Green with Nanophotonics Plasmons are optically induced collective electronic excitations tightly confined to the surface of a metal, with silver being the metal of choice. The subwavelength confinement offers the opportunity to shrink optoelectronic circuits to the nanometer scale. However, scattering processes within the metal lead to losses. Lu et al. (p. 450 ) developed a process to produce atomically smooth layers of silver, epitaxially grown on silicon substrates. A cavity in the silver layer is capped with a SiO insulating layer and an AlGaN nanorod was used to produce a low-threshold emission at green wavelengths.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 659 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Boost of Optical Angular Momentum Selectivity by Hybrid Nanolaser Circuits;Nano Letters;2024-01-24

2. Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing;International Journal of Extreme Manufacturing;2024-01-04

3. Integrated plasmonics nanocircuits;Plasmonic Materials and Metastructures;2024

4. Low-loss plasmonic metals epitaxially grown on semiconductors;Plasmonic Materials and Metastructures;2024

5. Fundamentals of plasmonic materials;Plasmonic Materials and Metastructures;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3