Karawun: a software package for assisting evaluation of advances in multimodal imaging for neurosurgical planning and intraoperative neuronavigation

Author:

Beare RichardORCID,Alexander Bonnie,Warren Aaron,Kean Michael,Seal Marc,Wray Alison,Maixner Wirginia,Yang Joseph Yuan-Mou

Abstract

Abstract Purpose The neuroimaging research community—which includes a broad range of scientific, medical, statistical, and engineering disciplines—has developed many tools to advance our knowledge of brain structure, function, development, aging, and disease. Past research efforts have clearly shaped clinical practice. However, translation of new methodologies into clinical practice is challenging. Anything that can reduce these barriers has the potential to improve the rate at which research outcomes can contribute to clinical practice. In this article, we introduce Karawun, a file format conversion tool, that has become a key part of our work in translating advances in diffusion imaging acquisition and analysis into neurosurgical practice at our institution. Methods Karawun links analysis workflows created using open-source neuroimaging software, to Brainlab (Brainlab AG, Munich, Germany), a commercially available surgical planning and navigation suite. Karawun achieves this using DICOM standards supporting representation of 3D structures, including tractography streamlines, and thus offers far more than traditional screenshot or color overlay approaches. Results We show that neurosurgical planning data, created from multimodal imaging data using analysis methods implemented in open-source research software, can be imported into Brainlab. The datasets can be manipulated as if they were created by Brainlab, including 3D visualizations of white matter tracts and other objects. Conclusion Clinicians can explore and interact with the results of research neuroimaging pipelines using familiar tools within their standard clinical workflow, understand the impact of the new methods on their practice and provide feedback to methods developers. This capability has been important to the translation of advanced analysis techniques into practice at our institution.

Funder

Royal Children's Hospital Foundation

The Johnstone Family Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3