Fibre orientation atlas guided rapid segmentation of white matter tracts

Author:

Young Fiona12ORCID,Aquilina Kristian3ORCID,Seunarine Kiran K.14ORCID,Mancini Laura56ORCID,Clark Chris A.1ORCID,Clayden Jonathan D.1ORCID

Affiliation:

1. Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health University College London London UK

2. Department of Medical Physics and Biomedical Engineering University College London London UK

3. Department of Neurosurgery Great Ormond Street Hospital for Children London UK

4. Department of Radiology Great Ormond Street Hospital for Children London UK

5. Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery University College London Hospitals NHS Foundation Trust London UK

6. Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology University College London London UK

Abstract

AbstractFibre tract delineation from diffusion magnetic resonance imaging (MRI) is a valuable clinical tool for neurosurgical planning and navigation, as well as in research neuroimaging pipelines. Several popular methods are used for this task, each with different strengths and weaknesses making them more or less suited to different contexts. For neurosurgical imaging, priorities include ease of use, computational efficiency, robustness to pathology and ability to generalise to new tracts of interest. Many existing methods use streamline tractography, which may require expert neuroimaging operators for setting parameters and delineating anatomical regions of interest, or suffer from as a lack of generalisability to clinical scans involving deforming tumours and other pathologies. More recently, data‐driven approaches including deep‐learning segmentation models and streamline clustering methods have improved reproducibility and automation, although they can require large amounts of training data and/or computationally intensive image processing at the point of application. We describe an atlas‐based direct tract mapping technique called ‘tractfinder’, utilising tract‐specific location and orientation priors. Our aim was to develop a clinically practical method avoiding streamline tractography at the point of application while utilising prior anatomical knowledge derived from only 10–20 training samples. Requiring few training samples allows emphasis to be placed on producing high quality, neuro‐anatomically accurate training data, and enables rapid adaptation to new tracts of interest. Avoiding streamline tractography at the point of application reduces computational time, false positives and vulnerabilities to pathology such as tumour deformations or oedema. Carefully filtered training streamlines and track orientation distribution mapping are used to construct tract specific orientation and spatial probability atlases in standard space. Atlases are then transformed to target subject space using affine registration and compared with the subject's voxel‐wise fibre orientation distribution data using a mathematical measure of distribution overlap, resulting in a map of the tract's likely spatial distribution. This work includes extensive performance evaluation and comparison with benchmark techniques, including streamline tractography and the deep‐learning method TractSeg, in two publicly available healthy diffusion MRI datasets (from TractoInferno and the Human Connectome Project) in addition to a clinical dataset comprising paediatric and adult brain tumour scans. Tract segmentation results display high agreement with established techniques while requiring less than 3 min on average when applied to a new subject. Results also display higher robustness than compared methods when faced with clinical scans featuring brain tumours and resections. As well as describing and evaluating a novel proposed tract delineation technique, this work continues the discussion on the challenges surrounding the white matter segmentation task, including issues of anatomical definitions and the use of quantitative segmentation comparison metrics.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3