When scale is surplus

Author:

Gryb SeanORCID,Sloan David

Abstract

AbstractWe study a long-recognised but under-appreciated symmetry called dynamical similarity and illustrate its relevance to many important conceptual problems in fundamental physics. Dynamical similarities are general transformations of a system where the unit of Hamilton’s principal function is rescaled, and therefore represent a kind of dynamical scaling symmetry with formal properties that differ from many standard symmetries. To study this symmetry, we develop a general framework for symmetries that distinguishes the observable and surplus structures of a theory by using the minimal freely specifiable initial data for the theory that is necessary to achieve empirical adequacy. This framework is then applied to well-studied examples including Galilean invariance and the symmetries of the Kepler problem. We find that our framework gives a precise dynamical criterion for identifying the observables of those systems, and that those observables agree with epistemic expectations. We then apply our framework to dynamical similarity. First we give a general definition of dynamical similarity. Then we show, with the help of some previous results, how the dynamics of our observables leads to singularity resolution and the emergence of an arrow of time in cosmology.

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Philosophy

Reference86 articles.

1. Albert, D. (2009). Time and chance. Harvard University Press.

2. Apostol, T. M. (2012). Modular functions and Dirichlet series in number theory (Vol. 41). Springer.

3. Arnol’d, V. I. (2013). Mathematical methods of classical mechanics (Vol. 60). Springer.

4. Ashtekar, A., Henderson, A., & Sloan, D. (2011). A Hamiltonian formulation of the BKL conjecture. Physical Review D, 83, 084024. https://doi.org/10.1103/PhysRevD.83.084024.

5. Barbour, J. (1995). Mach before mach. In J. B. Barbour & H. Pfister (Eds.), Mach’s principle: From newton’s bucket to quantum gravity (p. 6).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries;Studies in Applied Mathematics;2024-03-11

2. Flipping arrows;Metascience;2024-03-04

3. The Open Systems View;Philosophy of Physics;2024

4. Scaling symmetries and canonoid transformations in Hamiltonian systems;International Journal of Geometric Methods in Modern Physics;2023-12-02

5. Scaling symmetries, contact reduction and Poincaré’s dream;Journal of Physics A: Mathematical and Theoretical;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3