Scaling symmetries, contact reduction and Poincaré’s dream

Author:

Bravetti AlessandroORCID,Jackman Connor,Sloan David

Abstract

Abstract We state conditions under which a symplectic Hamiltonian system admitting a certain type of symmetry (a scaling symmetry) may be reduced to a type of contact Hamiltonian system, on a space of one less dimension. We observe that such contact reductions underly the well-known McGehee blow-up process from classical mechanics. As a consequence of this broader perspective, we associate a type of variational Herglotz principle associated to these classical blow-ups. Moreover, we consider some more flexible situations for certain Hamiltonian systems depending on parameters, to which the contact reduction may be applied to yield contact Hamiltonian systems along with their Herglotz variational counterparts as the underlying systems of the associated scale-invariant dynamics. From a philosophical perspective, one obtains an equivalent description for the same physical phenomenon, but with fewer inputs needed, thus realizing Poincaré’s dream of a scale-invariant description of the Universe.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference53 articles.

1. Projective dynamics and classical gravitation;Albouy;Regul. Chaotic Dyn.,2008

2. Identification of a gravitational arrow of time;Barbour;Phys. Rev. Lett.,2014

3. An invitation to singular symplectic geometry;Braddell;Int. J. Geom. Methods Mod. Phys.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symmetries and Dissipation Laws on Contact Systems;Mediterranean Journal of Mathematics;2024-07-02

2. Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries;Studies in Applied Mathematics;2024-03-11

3. Scaling symmetries and canonoid transformations in Hamiltonian systems;International Journal of Geometric Methods in Modern Physics;2023-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3