Antimicrobial activity of lipids extracted from Hermetia illucens reared on different substrates

Author:

Franco Antonio,Scieuzo Carmen,Salvia Rosanna,Pucciarelli Valentina,Borrelli Luca,Addeo Nicola Francesco,Bovera Fulvia,Laginestra Ambrogio,Schmitt Eric,Falabella PatriziaORCID

Abstract

Abstract As the problem of antimicrobial resistance is constantly increasing, there is a renewed interest in antimicrobial products derived from natural sources, particularly obtained from innovative and eco-friendly materials. Insect lipids, due to their fatty acid composition, can be classified as natural antimicrobial compounds. In order to assess the antibacterial efficacy of Hermetia illucens lipids, we extracted this component from the larval stage, fed on different substrates and we characterized it. Moreover, we analyzed the fatty acid composition of the feeding substrate, to determine if and how it could affect the antimicrobial activity of the lipid component. The antimicrobial activity was evaluated against Gram-positive Micrococcus flavus and Gram-negative bacteria Escherichia coli. Analyzing the fatty acid profiles of larval lipids that showed activity against the two bacterial strains, we detected significant differences for C4:0, C10:0, C16:1, C18:3 n3 (ALA), and C20:1. The strongest antimicrobial activity was verified against Micrococcus flavus by lipids extracted from larvae reared on strawberry, tangerine, and fresh manure substrates, with growth inhibition zones ranged from 1.38 to 1.51 mm, while only the rearing on manure showed the effect against Escherichia coli. Notably, the fatty acid profile of H. illucens seems to not be really influenced by the substrate fatty acid profile, except for C18:0 and C18:2 CIS n6 (LA). This implies that other factors, such as the rearing conditions, larval development stages, and other nutrients such as carbohydrates, affect the amount of fatty acids in insects. Key points Feeding substrates influence larval lipids and fatty acids (FA) Generally, there is no direct correlation between substrate FAs and the same larvae FAs Specific FAs influence more the antimicrobial effect of BSF lipids Graphical abstract

Funder

Regione Basilicata

Università degli Studi della Basilicata

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3