Multibody dynamics and optimal control for optimizing spinal exoskeleton design and support

Author:

Harant MonikaORCID,Näf Matthias B.,Mombaur Katja

Abstract

AbstractIn the industrial work environment, spinal exoskeletons can assist workers with heavy lifting tasks by reducing the needed muscle activity. However, the requirements for the design and control of such an exoskeleton to optimally support users with different body builds and movement styles are still open research questions. Thus, extensive testing on the human body is needed, requiring a lot of different sophisticated prototypes that subjects can wear for several hours. To facilitate this development process, we use multibody dynamics combined with optimal control to optimize the support profile of an existing prototype and evaluate a new design concept (DC) that includes motors at the hip joint. A dynamic model of the prototype was developed, including its passive elements with torque generation that accounts for potential misalignment. The human-robot interaction was simulated and optimized in an all-at-once approach. The parameters that describe the characteristics of the passive elements (including beam radius, spring pretension, length of the lever arm, radius of profile) and, in the case of DC, the torque profiles of the motors were optimized. Limits on interaction forces ensured that the exoskeleton remains comfortable to wear. Simulations without the exoskeleton allowed comparing the user’s actuation concerning joint moment and muscle activation. Our results agree well with experimental data using the prototype, making it a useful tool to optimize exoskeleton design and support and evaluate the effect of different actuation systems, mass distributions, and comfort requirements.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3