Drawing mechanisms for top coal in longwall top coal caving (LTCC): A review of two decades of literature

Author:

Wang Jiachen,Yang Shengli,Wei Weijie,Zhang Jinwang,Song ZhengyangORCID

Abstract

AbstractThis review details the state of the art in research on top coal drawing mechanisms in Longwall top coal caving (LTCC) by examining the relevant literature over the last two decades. It starts with an introduction of the brief history and basic procedures of LTCC. The framework of research on the drawing mechanism, basic concepts, and some theoretical models of LTCC are detailed in sect. research framework of top coal drawing mechanism. The authors note that the Top coal drawbody (TCD), Top coal boundary (TCB) and Top coal recovery ratio (TCRR) are key factors in the drawing mechanism. The Body–boundary–ratio (BBR) research system has been the classic framework for research over the last 20 years. The modified Bergmark–Roos model, which considers the effects of the supporting rear canopy, flowing velocity of top coal, and its shape factor, is optimal for characterizing the TCD. A 3D model to describe the TCB that considers the thicknesses of the coal seam and roof strata is reviewed. In sect. physical testing and numerical simulation, the physical tests and numerical simulations in the literature are classified for ease of bibliographical review, and classic conclusions regarding the drawing mechanism of top coal are presented and discussed with elaborate illustrations and descriptions. The deflection of the TCD is noted, and is caused by the shape of the rear canopy. The inclined coal seam always induces a larger TCD, and a deflection in the TCD has also been observed in it. The effects of the drawing sequence and drawing interval on the TCRR are reviewed, where a long drawing interval is found to lead to significant loss of top coal. Its flowing behavior and velocity distribution are also presented. Sect. practical applications of drawing mechanisms for LTCC mines 4 summarizes over 10 cases where the TCRR of LTCC mines improved due to the guidance of the drawing mechanism. The final section provides a summary of the work here and some open questions. Prospective investigations are highlighted to give researchers guidance on promising issues in future research on LTCC.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3