Rare Variant in Metallothionein 1E Increases the Risk of Type 2 Diabetes in a Chinese Population

Author:

Zou Xiantong1,Hu Mengdie1,Huang Xiuting1,Zhou Lingli1,Li Meng1,Chen Jing1,Ma Liping2,Gao Xueying1,Luo Yingying1,Cai Xiaoling1,Li Yufeng13,Zhou Xianghai1,Li Na2,Shi Yuanping1,Han Xueyao1,Ji Linong1ORCID

Affiliation:

1. 1Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China

2. 2Central Laboratory, Peking University People’s Hospital, Beijing, China

3. 3Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China

Abstract

OBJECTIVE To uncover novel targets for the treatment of type 2 diabetes (T2D) by investigating rare variants with large effects in monogenic forms of the disease. RESEARCH DESIGN AND METHODS We performed whole-exome sequencing in a family with diabetes. We validated the identified gene using Sanger sequencing in additional families and diabetes- and community-based cohorts. Wild-type and variant gene transgenic mouse models were used to study the gene function. RESULTS Our analysis revealed a rare variant of the metallothionein 1E (MT1E) gene, p.C36Y, in a three-generation family with diabetes. This risk allele was associated with T2D or prediabetes in a community-based cohort. MT1E p.C36 carriers had higher HbA1c levels and greater BMI than those carrying the wild-type allele. Mice with forced expression of MT1E p.C36Y demonstrated increased weight gain, elevated postchallenge serum glucose and liver enzyme levels, and hepatic steatosis, similar to the phenotypes observed in human carriers of MT1E p.C36Y. In contrast, mice with forced expression of MT1E p.C36C displayed reduced weight and lower serum glucose and serum triglyceride levels. Forced expression of wild-type and variant MT1E demonstrated differential expression of genes related to lipid metabolism. CONCLUSIONS Our results suggest that MT1E could be a promising target for drug development, because forced expression of MT1E p.C36C stabilized glucose metabolism and reduced body weight, whereas MT1E p.C36Y expression had the opposite effect. These findings highlight the importance of considering the impact of rare variants in the development of new T2D treatments.

Funder

Natural Science Foundation of Beijing Municipality

National High-technology Research and Development Program of China

Research Key Project of the Ministry of Science and Technology of the People’s Republic of China

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3