Death vs. Data Science: Predicting End of Life

Author:

Ahmad Muhammad,Eckert Carly,McKelvey Greg,Zolfagar Kiyana,Zahid Anam,Teredesai Ankur

Abstract

Death is an inevitable part of life and while it cannot be delayed indefinitely it is possible to predict with some certainty when the health of a person is going to deteriorate. In this paper, we predict risk of mortality for patients from two large hospital systems in the Pacific Northwest. Using medical claims and electronic medical records (EMR) data we greatly improve prediction for risk of mortality and explore machine learning models with explanations for end of life predictions. The insights that are derived from the predictions can then be used to improve the quality of patient care towards the end of life.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Supervised Forecasting in Electronic Health Records With Attention-Free Models;IEEE Transactions on Artificial Intelligence;2024-08

2. Application of Artificial Intelligence in Research on Cancer and Its Metastasis;Cancer Metastasis Through the Lymphovascular System;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3