Author:
Liao Dongliang,Xu Jin,Li Gongfu,Huang Weijie,Liu Weiqing,Li Jing
Abstract
Predicting the popularity of online article sheds light to many applications such as recommendation, advertising and information retrieval. However, there are several technical challenges to be addressed for developing the best of predictive capability. (1) The popularity fluctuates under impacts of external factors, which are unpredictable and hard to capture. (2) Content and meta-data features, largely determining the online content popularity, are usually multi-modal and nontrivial to model. (3) Besides, it also needs to figure out how to integrate temporal process and content features modeling for popularity prediction in different lifecycle stages of online articles. In this paper, we propose a Deep Fusion of Temporal process and Content features (DFTC) method to tackle them. For modeling the temporal popularity process, we adopt the recurrent neural network and convolutional neural network. For multi-modal content features, we exploit the hierarchical attention network and embedding technique. Finally, a temporal attention fusion is employed for dynamically integrating all these parts. Using datasets collected from WeChat, we show that the proposed model significantly outperforms state-of-the-art approaches on popularity prediction.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献