Author:
Atzmon Dor,Bernardini Sara,Fagnani Fabio,Fairbairn David
Abstract
In tackling the multi-agent pathfinding problem (MAPF), we study a specific class of paths that are constructed by taking the agents’ shortest paths from the start to the goal locations and adding safe delays at the beginning of the paths, which guarantee that they are non-conflicting. Safe delays are calculated by exploiting a set of fundamental geometric constraints among the distances between all agents’ start and goal locations. Those constraints are simple, but the MAPF problem reformulated in terms of them remains computationally hard. Nonetheless, based on safe delays, we devise a new, fast and lightweight algorithm, called Delayed Shortest Path (DSP), to find solutions to the MAPF problem. Via an extensive experimental evaluation on standard benchmarks, we show that, in many cases, our technique runs several orders of magnitudes faster than related methods while addressing problems with thousands of agents and returning low-cost solutions.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced Causal Reasoning and Graph Networks for Multi-agent Path Finding;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
2. A Practical Evaluation of Multi-Agent Pathfinding in Automated Warehouse;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24