Proximal PanNet: A Model-Based Deep Network for Pansharpening

Author:

Cao Xiangyong,Chen Yang,Cao Wenfei

Abstract

Recently, deep learning techniques have been extensively studied for pansharpening, which aims to generate a high resolution multispectral (HRMS) image by fusing a low resolution multispectral (LRMS) image with a high resolution panchromatic (PAN) image. However, existing deep learning-based pansharpening methods directly learn the mapping from LRMS and PAN to HRMS. These network architectures always lack sufficient interpretability, which limits further performance improvements. To alleviate this issue, we propose a novel deep network for pansharpening by combining the model-based methodology with the deep learning method. Firstly, we build an observation model for pansharpening using the convolutional sparse coding (CSC) technique and design a proximal gradient algorithm to solve this model. Secondly, we unfold the iterative algorithm into a deep network, dubbed as Proximal PanNet, by learning the proximal operators using convolutional neural networks. Finally, all the learnable modules can be automatically learned in an end-to-end manner. Experimental results on some benchmark datasets show that our network performs better than other advanced methods both quantitatively and qualitatively.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised hyperspectral pansharpening via low-rank diffusion model;Information Fusion;2024-07

2. Dual-branch and triple-attention network for pan-sharpening;Applied Intelligence;2024-06-19

3. Deep learning-based spectral image super-resolution: a survey;Journal of Image and Graphics;2024

4. PanFlowNet: A Flow-Based Deep Network for Pan-sharpening;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Probability-based Global Cross-modal Upsampling for Pansharpening;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3