Author:
Banar Berker,Bryan-Kinns Nick,Colton Simon
Abstract
A common musical composition practice is to develop musical pieces using variations of musical themes. In this study, we present an interactive tool which can generate variations of musical themes in real-time using a variational autoencoder model. Our tool is controllable using semantically meaningful musical attributes via latent space regularisation technique to increase the explainability of the model. The tool is integrated into an industry standard digital audio workstation - Ableton Live - using the Max4Live device framework and can run locally on an average personal CPU rather than requiring a costly GPU cluster. In this way we demonstrate how cutting-edge AI research can be integrated into the exiting workflows of professional and practising musicians for use in the real-world beyond the research lab.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献