Design of an Intelligent Radio Frequency Identification (RFID) Based Cashless Vending Machine for Sales of Drinks

Author:

P. C. Okafor,G. G. James,C. Ituma

Abstract

This study examines the evolution of vending machines, emphasizing their integration with RFID technology for cashless transactions. Vending machines have transformed human-machine interaction, offering convenient access to products and services. Transitioning from coin-operated to RFID-enabled systems has revolutionized the industry, enhancing security, reducing costs, and improving user experience. Through exploration of technical specifications and design objectives, the research highlights RFID vending machines' potential to reshape consumer behavior and optimize operations. Traditional cash-based vending machines face challenges such as limited storage, recognition issues, and security concerns. To address these, the paper proposes an intelligent RFID-based cashless vending machine for drink sales. The system incorporates RFID technology for payment, allowing users to swipe cards and select drinks without cash involvement. Prototype development involved software design, utilizing C-language for multiproduct vending. Comparatively, the RFID-based system outperforms cash-based counterparts in efficiency, security, and sales tracking, presenting a superior solution for drink sales.

Publisher

African - British Journals

Reference27 articles.

1. [1] A. Gaur and D. Mathuria (2018). A Simple Approach to Design Reverse Vending Machine. Int. J. Electron., vol. 7, no. 3, 2018.

2. [2] M. Sharma, R. Sehrawat, T. Daim, and A. Shaygan (2021). Technology assessment: Enabling Blockchain in hospitality and tourism sectors. Technol. Forecast. Soc. Change, vol. 169, p. 120810, Aug. 2021, doi: 10.1016/j.techfore.2021.120810.

3. [3] A. L. Roth, M. Huff, K. Bendib (2017). Project Censored (U.S.), Eds., Censored 2018: press freedoms in a “post-truth” world: the top censored stories and media analysis of 2016-17. New York: Seven Stories Press.

4. [4] E. W. T. Ngai, L. Xiu, and D. C. K. Chau (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert Syst. Appl., vol. 36, no. 2, pp. 2592–2602, Mar. 2009, doi: 10.1016/j.eswa.2008.02.021.

5. [5] K. Segrave (2002). Vending machines: an American social history. Jefferson, N.C.: McFarland & Co.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3