DESIGN AND RESEARCH ON FEEDING COMPONENTS OF WHEAT FLOUR PARTICLE SIZE DETECTION DEVICE

Author:

WANG Mingxu1,ZHAO Haojun2,LI Saiqiang2,OUYANG Jiangfeng2,WU Junyong3,ZHANG Hengda4

Affiliation:

1. School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Key Laboratory of Grain and Oil Storage Facility & Safety, Henan University of Technology, Zhengzhou 450001, China

2. School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China

3. Hebei Pingle Flour Machinery Group Co., Ltd., Zhengding 050800, China

4. Buler (Wuxi) Commercial Co., Ltd., Wuxi, Jiangsu 214142, China

Abstract

To address the issues of poor timeliness and delayed feedback in traditional wheat milling processes for manual particle size detection, a wheat milling online particle size detection device has been designed. This paper focuses on the design optimization of the key feeding component in the device, which affects the accuracy of particle size detection. The feeding component adopts shaftless screw blades. Through theoretical analysis, the main parameter ranges affecting the throughput capacity of the shaftless screw conveyor are determined. A Box-Behnken experiment is designed to obtain the optimal parameter combination for each factor: outer diameter of screw blades 23.8 mm, inner diameter of screw blades 6.4 mm, pitch 11.2 mm, and blade rotation speed 288.9 r/min. Simulation and test stand experiments are conducted using the above parameter combination. The simulation results show that the average throughput capacity of the feeding component is 2.85 kg/h, while the average throughput capacity of the test stand experiment is 2.84 kg/h, with a coefficient of variation of uniformity of 1.33%. These results indicate that the above parameter combination meets the design requirements for the feeding component in the device.

Publisher

INMA Bucharest-Romania

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3