Efficacy, Mechanism and Antiviral Resistance of Neuraminidase Inhibitors and Adamantane against Avian Influenza

Author:

Hewajuli Dyah Ayu,Dharmayanti NLPI

Abstract

Vaccination and antiviral drug are often used to control influenza. However, the effectiveness of vaccine was impaired due to the emergence of new variant of virus strain. Antiviral drug consists of prophylactic and curative substances, namely M2 ion channel inhibitors (adamantane; amantadine and rimantadine) and neuraminidase (NA) inhibitors (NAIs; oseltamivir, zanamivir, peramivir, laninamivir). The synthesis and modification of antiviral neuraminidase (NA) inhibitors (NAIs) and adamantanes increased the antiviral effectiveness. The mechanism of the neuraminidase inhibitor is to prevent influenza infection by inhibiting the release of the virus from internal cells. Adamantane is antiviral drug that selectively inhibits the flow of H+ ions through M2 protein to prevent the uncoating virus particles getting into the endosome. The substitution of (H275Y, S247N, I223L, K150N, R292K, I222T, R152K, R118K, E119V) on NA protein caused resistance of avian influenza virus against the neuraminidase inhibitor. The combination of mutations (S247N, I223L, K150N) increased the resistance of influenza A (H5N1) virus. The diffusion of adamantane resistance varies among HA subtypes, the species of host, the period of isolation, and region. Mutations at residues of 26, 27, 30, 31 or 34 transmembrane M2 protein caused adamantane resistance. The unique substitution (V27I) of M2 protein of clade 2.3.2 H5N1 subtype isolated in Indonesia in 2016 has been contributed to the amantadine resistance. Antiviral combination of M2 ion channel inhibitors and neuraminidase (NA) inhibitors is effective treatments for the resistance.

Publisher

Indonesian Center for Animal Research and Development (ICARD)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the Interaction between Silibinin and Neuraminidase;Current Pharmaceutical Design;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3