Review on Intrinsic Electrocatalytic Activity of Transition Metal Nitrides on HER

Author:

Zhang Han-Ming12,Wang Jian-Jiang12,Meng Yongqiang12,Lu Fushen3,Ji Muwei3,Zhu Caizhen4,Xu Jian4,Sun Jinfeng12

Affiliation:

1. School of Material Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.

2. Hebei Key Laboratory of Flexible Functional Materials, Shijiazhuang, Hebei 0500180, China.

3. College of Chemistry and Chemical Engineering, Shantou University, Shantou, Guangdong 515000, China.

4. Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.

Abstract

Hydrogen energy is considered as an ideal energy with the advantages of green, sustainability, and high energy density, and water splitting is one of the efficient strategies for green hydrogen without carbon emission. As for cathodic hydrogen evolution reaction (HER), besides the Pt-based electrocatalysts with excellent electrocatalytic activities on HER, transition metal nitrides (TMNs) as cheap and facile-prepared electrocatalysts have shown remarkable electrocatalytic activities. Incorporation of N atom in metal interstitial lattice results in the unique structure of TMN with high electronic conductivity, strong chemical stability, and d-band contraction. Although the intrinsic electrocatalytic activities of TMNs are mostly lower than those of Pt, it also attracted much attention to the development of TMN with higher intrinsic activity by electronic structure modulation. Here, we review the recent improvement strategies for the intrinsic electrocatalytic activities of TMN catalysts on HER by electronic structure modulation, such as facet, alloying, doping, vacancy, heterostructure, and hybridization. Some important breakthroughs of TMNs have been made; however, the scale application of TMNs with high activity in commercial water electrolyzer is urgent to explore. The future development of TMNs is proposed to focus on developing facile synthesis methods, elucidating regulation mechanism and catalytic mechanism, and enhancing activity and stability.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3