An On-Chip Viscoelasticity Sensor for Biological Fluids

Author:

Zhao Qianbin1,Yan Sheng2,Zhang Boran3,Fan Kai4,Zhang Jun5,Li Weihua6

Affiliation:

1. Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.

2. Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.

3. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

4. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.

5. Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.

6. School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.

Abstract

There are so many non-Newtonian fluids in our daily life, such as milk, blood, cytoplasm, and mucus, most of which are viscoelastic heterogeneous liquid containing cells, inorganic ion, metabolites, and hormones. In microfluidic microparticle-manipulating applications, the target particles are practically distributed within the biological fluids like blood and urine. The viscoelasticity of biological fluid is constantly ignored for simplicity especially when the fluid is substantially diluted and contains rather complex components. However, even the fluid’s ultraweak viscoelasticity actually affects the microparticle migration and may bring a completely different behavior compared with the Newtonian fluids. As a result, a robust and easy operated on-chip viscoelasticity sensor is potential and desired in many research and industrial fields, including assay sample preparation, clinical diagnostics, and on-chip sensor. In this work, we employed stable non-Newtonian fluid–polyethylene oxide (PEO) solutions with various concentrations to investigate and calibrate effects of the weak fluidic viscoelasticity on microparticle behaviors in a double-layered microfluidic channel. An analogy-based database of fluidic patterns for viscoelasticity sensing and relaxation time measurement was established. Then, we tested different biological fluids including blood plasma and fetal bovine serum and proved that they exhibited similar viscoelasticity effects to the PEO solutions with the corresponding concentration, which reached a good agreement with available results by references. The detection limitation of relaxation time can reach 1 ms. It promised a robust and integrated on-chip microfluidic viscoelasticity sensor for different biological fluids without complicated calculations.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3