Ionic Liquid-Based Electrolytes for Aluminum/Magnesium/Sodium-Ion Batteries

Author:

Zhu Na1,Zhang Kun1,Wu Feng12,Bai Ying1,Wu Chuan12ORCID

Affiliation:

1. Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China

Abstract

Developing post-lithium-ion battery technology featured with high raw material abundance and low cost is extremely important for the large-scale energy storage applications, especially for the metal-based battery systems such as aluminum, sodium, and magnesium ion batteries. However, their developments are still in early stages, and one of the major challenges is to explore a safe and reliable electrolyte. An ionic liquid-based electrolyte is attractive and promising for developing safe and nonflammable devices with wide temperature ranges owing to their several unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. In this review, the recent emerging limitations and strategies of ionic liquid-based electrolytes in the above battery systems are summarized. In particular, for aluminum-ion batteries, the interfacial reaction between ionic liquid-based electrolytes and the electrode, the mechanism of aluminum storage, and the optimization of electrolyte composition are fully discussed. Moreover, the strategies to solve the problems of electrolyte corrosion and battery system side reactions are also highlighted. Finally, a general conclusion and a perspective focusing on the current development limitations and directions of ionic liquid-based electrolytes are proposed along with an outlook. In order to develop novel high-performance ionic liquid electrolytes, we need in-depth understanding and research on their fundamentals, paving the way for designing next-generation products.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3