The State of the Art in Root System Architecture Image Analysis Using Artificial Intelligence: A Review

Author:

Weihs Brandon J.12ORCID,Heuschele Deborah-Jo12ORCID,Tang Zhou3,York Larry M.4ORCID,Zhang Zhiwu3,Xu Zhanyou1ORCID

Affiliation:

1. United States Department of Agriculture–Agricultural Research Service–Plant Science Research, St. Paul, MN 55108, USA.

2. Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.

3. Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.

4. Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

Abstract

Roots are essential for acquiring water and nutrients to sustain and support plant growth and anchorage. However, they have been studied less than the aboveground traits in phenotyping and plant breeding until recent decades. In modern times, root properties such as morphology and root system architecture (RSA) have been recognized as increasingly important traits for creating more and higher quality food in the “Second Green Revolution”. To address the paucity in RSA and other root research, new technologies are being investigated to fill the increasing demand to improve plants via root traits and overcome currently stagnated genetic progress in stable yields. Artificial intelligence (AI) is now a cutting-edge technology proving to be highly successful in many applications, such as crop science and genetic research to improve crop traits. A burgeoning field in crop science is the application of AI to high-resolution imagery in analyses that aim to answer questions related to crops and to better and more speedily breed desired plant traits such as RSA into new cultivars. This review is a synopsis concerning the origins, applications, challenges, and future directions of RSA research regarding image analyses using AI.

Funder

USDA

Savannah River Operations Office, U.S. Department of Energy

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3