A Scalable, High-Efficiency, Low-Energy-Spread Laser Wakefield Accelerator Using a Tri-Plateau Plasma Channel

Author:

Liu Shuang1,Li Fei1ORCID,Zhou Shiyu1,Hua Jianfei1,Mori Warren B.2,Joshi Chan2,Lu Wei134

Affiliation:

1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China.

2. University of California Los Angeles, Los Angeles, CA 90095, USA.

3. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

4. Beijing Academy of Quantum Information Science, Beijing 100193, China.

Abstract

The emergence of multi-petawatt laser facilities is expected to push forward the maximum energy gain that can be achieved in a single stage of a laser wakefield acceleration (LWFA) to tens of giga-electron volts, which begs the question—is it likely to impact particle physics by providing a truly compact particle collider? Colliders have very stringent requirements on beam energy, acceleration efficiency, and beam quality. In this article, we propose an LWFA scheme that can for the first time simultaneously achieve hitherto unrealized acceleration efficiency from the laser to the electron beam of >20% and a sub-1% energy spread using a stepwise plasma structure and a nonlinearly chirped laser pulse. Three-dimensional high-fidelity simulations show that the nonlinear chirp can effectively mitigate the laser waveform distortion and lengthen the acceleration distance. This, combined with an interstage rephasing process in the stepwise plasma, can triple the beam energy gain compared to that in a uniform plasma for a fixed laser energy, thereby dramatically increasing the efficiency. A dynamic beam loading effect can almost perfectly cancel the energy chirp that arises during the acceleration, leading to the sub-percent energy spread. This scheme is highly scalable and can be applied to petawatt LWFA scenarios. Scaling laws are obtained, which suggest that electron beams with parameters relevant for a Higgs factory could be reached with the proposed high-efficiency, low-energy-spread scheme.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Discipline Construction Foundation of “Double World-class Project”

National Major Science and Technology Projects of China

U.S. Department of Energy

National Science Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3