Reversibly Tuning Electrochemiluminescence with Stimulated Emission Route for Single-Cell Imaging

Author:

Ma Cheng12,Gou Xiaodan2,Xing Zejing2,Wang Min-Xuan2,Zhu Wenlei2,Xu Qin1,Jiang Dechen2ORCID,Zhu Jun-Jie2

Affiliation:

1. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.

2. State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China.

Abstract

Electrochemiluminescence (ECL) has established itself as an excellent transduction technique in biosensing and light-emitting device, while conventional ECL mechanism depending on spontaneous emission of luminophores lacks reversibility and tunable emission characters, limiting the universality of ECL technique in the fields of fundamental research and clinical applications. Here, we report the first observation of stimulated emission route in ECL and thus establish a reversible tuning ECL microscopy for single-cell imaging. This microscopy uses a focused red-shifted beam to transfer spontaneous ECL into stimulated ECL, which enables selective and reversible tuning of ECL emission from homogeneous solution, single particles, and single cells. After excluding other possible competitive routes, the stimulated ECL emission route is confirmed by a dual-objective system in which the suppressed spontaneous ECL is accompanied by the enhanced stimulated ECL. By incorporating a commercial donut-shaped beam, the sharpness of single-cell matrix adhesion is improved 2 to 3 times compared with the counterpart in confocal ECL mode. The successful establishment of this stimulated emission ECL will greatly advance the development of light-emitting device and super-resolution ECL microscopy.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference69 articles.

1. Single-Cell Metabolomics: Analytical and Biological Perspectives

2. A high spatiotemporal iontronic single-cell viscometer;Zhang T;Research,2022

3. Single-cell microwell platform reveals circulating neural cells as a clinical indicator for patients with blood-brain barrier breakdown;Zhang Y;Research,2021

4. Single Cell Optical Imaging and Spectroscopy

5. Revealing the distribution of aggregation-induced emission nanoparticles via dual-modality Imaging with fluorescence and mass spectrometry;Mao L;Research,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3