An Arabidopsis Mutant Tolerant to Lethal Ultraviolet-B Levels Shows Constitutively Elevated Accumulation of Flavonoids and Other Phenolics

Author:

Bieza Kim1,Lois Rodrigo1

Affiliation:

1. Department of Biological Science, California State University, 800 North State College Boulevard, Fullerton, California 92834

Abstract

Abstract The isolation and characterization of mutants hypersensitive to ultraviolet (UV) radiation has been a powerful tool to learn about the mechanisms that protect plants against UV-induced damage. To increase our understanding of the various mechanisms of defense against UVB radiation, we searched for mutations that would increase the level of tolerance of Arabidopsis plants to UV radiation. We describe a single gene dominant mutation (uvt1) that leads to a remarkable tolerance to UVB radiation conditions that would kill wild-type plants. Pigment analyses show a constitutive increase in accumulation of UV-absorbing compounds in uvt1 that increases the capacity of the leaves to block UVB radiation and therefore is likely to be responsible for the elevated resistance of this mutant to UVB radiation. These increases in absorption in the UV region are due, at least in part, to increases in flavonoid and sinapate accumulation. Expression of chalcone synthase (CHS) mRNA was shown to be constitutively elevated in uvt1 plants, suggesting that the increases in absorption may be a consequence of changes in gene expression. Expression of CHS in uvt1 was shown to be still inducible by UV, indicating that the uvt1 lesion may not affect the UV-mediated regulation of CHS gene expression. Our data support an important role for UV screens in the overall protection of plants to UVB radiation. The uvt1 mutant could prove to be an important tool to elucidate further the exact role of UV-absorbing pigments in UV protection as well as the relative contribution of other mechanisms to the overall tolerance of plants to UV radiation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3